The distribution of sterols in some Mediterranean Chlorophyceae

Order	Species	Sterol (mg/kg dry alga)*							
		1	2	3	4	5	6	7	8
Ulotrichales	Ulva rigida	22	t	t	t	-,	81		
	Enteromorpha intestinalis	t		t		+	140		
Cladophorales	Cladophora echinus	124	t	55		_	t		492
Siphonales	Codium aderens	_	-	_	_	t '	-	629	_
	Codium bursa	t	Name .	_	_	_	-	250	
	Codium tomentosum	-	_	_	_	_	122	429	-
	Halimedia tuna	92	31	72	15	_	_	_	509
Siphonocladales	Valonia utricularis	23	t	6	t	-	_	-	103

^{*}Indicates not detectable, t indicates trace amounts.

seaweeds belonging to the order Ulotrichales. On the other hand the analysis of the only species of Cladophorales examined is consistent with the previous results: it contained a complex mixture of sterols with a high proportion of cholesterol. As far as the Siphonales are concerned, our analyses indicated that clerosterol is representative only of the genus *Codium*. In fact it is the dominant sterol of *C. tomentosum* and virtually the unique sterol in *C. aderens* and *C. bursa*, while it is absent in *Halimeda tuna*, where the most abundant sterol is clionasterol, the same as in the previously examined *H. incrassata*.

- Acknowledgment. This work is a result of research sponsored by Consiglio Nazionale delle Ricerche in the frame of the Progetto finalizzato per l'Oceanografia e i Fondi Marini. Thanks are also due to Centro di Metodologie Chimico-fisiche of the University of Naples for the determination of PMR and mass spectra.
 L.J. Goad, in: Biochemical and Biophysical Perspectives in
- 2 L.J. Goad, in: Biochemical and Biophysical Perspectives in Marine Biology, vol. III, p. 213. Ed. D.C. Malins and J.R. Sargent. Academic Press, New York 1976.
- E. Fattorusso, S. Magno, C. Santacroce, D. Sica, S. Impellizzeri, S. Mangiafico, G. Oriente, M. Piattelli and S. Sciuto, Phytochemistry 14, 1579 (1975); Biochem. Syst. Ecol. 4, 135 (1976); V. Amico, G. Oriente, M. Piatteli, C. Tringali, E. Fattorusso, S. Magno, L. Mayol, C. Santacroce and D. Sica, Biochem. Syst. Ecol. 4, 143 (1976).
- 4 G. W. Patterson, Lipids 6, 120 (1971).

Synthesis of 6-deoxy-6-fluoro-L-ascorbic acid¹

J. Kiss and W. Arnold

Pharmaceutical Research Department and Central Research Units, F. Hoffmann-La Roche & Co. Ltd, CH-4002 Basel (Switzerland), 18 January 1980

Summary. 6-Deoxy-6-fluoro-L-ascorbic acid has been synthesized in 5 steps starting from 2,3-4,6-di-O-isopropylidene-2-keto-L-gulonic acid.

Fluoro derivatives of physiologically active compounds, such as nucleosides², amino acids³, carbohydrates⁴, corticosteroids⁵ and vitamins have attracted considerable attention in medicinal and also in preparative organic chemistry⁶. As part of a synthetic programme on vitamin C derivatives we have synthesized 6-deoxy-6-fluoro-L-ascorbic acid, i.e. the primary hydroxyl group is substituted by fluorine. The starting material of our synthesis was the well-known intermediary product of the Reichstein-synthesis⁷ for L-ascorbic acid: the 2,3-4,6-di-O-isopropylidene-L-gulosonic acid (I). It was converted to its methyl ester II using methyl

iodide in the presence of potassium carbonate in dimethylformamide solution. The selective cleavage of the 4,6-Oisopropylidene protecting group was carried out in water in the presence of cuprous acetate as catalyst⁸.

Methyl 2,3-O-isopropylidene-a-L-gulosonate (III) was then converted into its 6-toluenesulfonate ester IV (m.p. 127-128 °C), which with KF in dry dimethylformamide at 150 °C gave the methyl 6-deoxy-6-fluoro-2,3-O-isopropylidene-L-gulosonate (V) (m.p. 98-100 °C).

The last step of the synthesis was the cleavage of the protecting group and the isomerization to 6-deoxy-6-fluo-

ro-L-ascorbic acid (VI). The isomerization was carried out by refluxing V with Amberlite JRC-120 (H+-form) in aqueous solution. The crystalline material thus obtained was recrystallized from nitromethane and had a m.p. of 140-142 °C $[a]_D^{25} = 19.6$ ° $(c = 0.5 \text{ in H}_2\text{O})^9$

Main confirmation of the structures of compounds V and VI was obtained from their ¹H- and ¹³C-NMR-spectra:

"H-NMR of V (CDCl₃, 270 MHz): 1.41 ppm and 1.58 ppm, s, CH_3 –C– CH_3); ~ 2.4 ppm, broad, -OH; 3.90 ppm, s, -COOC H_3 , 4.32 ppm, d, J_{45} =2.5 Hz, 4-CH; ~ 4.6 ppm, m, 5-CH; 4.69 ppm, ddd, J_{6F} =46.5 Hz, J_{66} =10.2 Hz, J_{65} =6 Hz, one H of 6- CH_2 ; 4.71 ppm, d, J_{3F} =2 Hz, 3-CH; 4.79 ppm, ddd, J_{6F} =50 Hz, J_{65} =4.4 Hz, the other H of 6- CH_2 .

13C-NMR of V (CDCl₃, ~1 mmole/ml, 22.6 MHz, broad band decoupled): 25.8 and 26.9 ppm, CH–C–CH: 53.5 band decoupled): 25.8 and 26.9 ppm, CH_3 –C– CH_3 ; 53.5 ppm, $-OCH_3$; 74.9 ppm, d, J_{CF} =6.1 Hz, 4-C; 81.3 ppm, d, J_{CF} =166,6 Hz, 6-C; 81.8 ppm, d, J_{CF} =22.0 Hz, 5-C; 87.9

ppm, 3-C; 110.1 ppm, 2-C; 114.8 ppm, CH₃-¢-CH₃; 168.8 ppm, -CO-. The assignment was checked by a gated decoupled spectrum, which confirmed the assignment derived from chemical shift and fluorine-coupling.

¹H-NMR of VI (D₂O, 270 MHz, only one tautomer is observed): 4.30 ppm, dddd, $J_{5F}=16.6$ Hz, $J_{45}=2.2$ Hz, $J_{56}=7$ Hz, $J_{56}=4.7$ Hz, 5-CH; 4.61 ppm, ddd, $J_{6F}=47.4$ Hz, $J_{66}=10.0$ Hz, one H of 6-CH₂; 4.68 ppm, ddd, $J_{6F}=46.0$ Hz, the other H of 6-CH₂; 4.94 ppm, d, 4-CH.

¹³C-NMR of VI (D₂O, ~1 mmole/ml, 22.6 MHz, broad band decoupled): 68.6 ppm, d, J_{CF} =20.1 Hz, 5-C; 77.1 ppm, d, J_{CF} =7.3 Hz, 4-C; 85.3 ppm, d, J_{CF} =167.2 Hz, 6-C; 119.5 ppm, 2-C; 156.2 ppm, eventually broadened by an unresolved CF-coupling, 3-C; 174.4 ppm, 1-C. The assignment was additionally checked by a gated decoupled spectrum and corresponds to the assignment given for ascorbic acid10.

- Dedicated to Professor Albert Szent-Györgyi, National Foundation for Cancer Research, Marine Biological Laboratory, Woods Hole, Massachusetts, on the occasion of his 85th birthday
- C. Heidelberger, N.K. Chaudhuri, P. Danneberg, D. Mooren, L. Griesbach, R. Duschinsky, R.J. Schnitzer, E. Pleven and J. Scheiner, Nature, Lond. 179, 663 (1957).
- J. Kollonitsch, S. Marburg and L.M. Perkins, J. org. Chem. 44,
- A.B. Foster and J.H. Westwood, Rev. pure appl. Chem. 35, 147 (1973).
- 5 L.S. Goodman and A. Gilman, in: The Pharmacological Basis of Therapeutics, 5th edn, p. 1491. Macmillan, New York 1975.
- L. Evelyn and L. D. Hall, Carbohyd. Res. 47, 285 (1976).
- T. Reichstein and A. Grüssner, Helv. chim. Acta 17, 311 (1934).
- J. Kiss and H. Spiegelberg, Helv. chim. Acta 47, 398 (1964). The corresponding chloro-, bromo-, and iodo-derivatives of Lascorbic acid have also been synthesized. See: Swiss patent No. 5741, 5. Mai 1975.
- 10 L.F. Johnson and W.C. Jankowski, Carbon-13 NMR Spectra. Wiley-Interscience, New York 1972.